Papers
Topics
Authors
Recent
2000 character limit reached

Deep Learning Sentiment Analysis of Amazon.com Reviews and Ratings

Published 4 Apr 2019 in cs.IR, cs.CL, cs.LG, and stat.ML | (1904.04096v1)

Abstract: Our study employs sentiment analysis to evaluate the compatibility of Amazon.com reviews with their corresponding ratings. Sentiment analysis is the task of identifying and classifying the sentiment expressed in a piece of text as being positive or negative. On e-commerce websites such as Amazon.com, consumers can submit their reviews along with a specific polarity rating. In some instances, there is a mismatch between the review and the rating. To identify the reviews with mismatched ratings we performed sentiment analysis using deep learning on Amazon.com product review data. Product reviews were converted to vectors using paragraph vector, which then was used to train a recurrent neural network with gated recurrent unit. Our model incorporated both semantic relationship of review text and product information. We also developed a web service application that predicts the rating score for a submitted review using the trained model and if there is a mismatch between predicted rating score and submitted rating score, it provides feedback to the reviewer.

Citations (53)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.