Papers
Topics
Authors
Recent
2000 character limit reached

A Monte Carlo EM Algorithm for the Parameter Estimation of Aggregated Hawkes Processes

Published 20 Jan 2020 in stat.ME | (2001.07160v1)

Abstract: A key difficulty that arises from real event data is imprecision in the recording of event time-stamps. In many cases, retaining event times with a high precision is expensive due to the sheer volume of activity. Combined with practical limits on the accuracy of measurements, aggregated data is common. In order to use point processes to model such event data, tools for handling parameter estimation are essential. Here we consider parameter estimation of the Hawkes process, a type of self-exciting point process that has found application in the modeling of financial stock markets, earthquakes and social media cascades. We develop a novel optimization approach to parameter estimation of aggregated Hawkes processes using a Monte Carlo Expectation-Maximization (MC-EM) algorithm. Through a detailed simulation study, we demonstrate that existing methods are capable of producing severely biased and highly variable parameter estimates and that our novel MC-EM method significantly outperforms them in all studied circumstances. These results highlight the importance of correct handling of aggregated data.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.