Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Markov-Modulated Hawkes Processes for Sporadic and Bursty Event Occurrences (1903.03223v4)

Published 8 Mar 2019 in stat.AP

Abstract: Modeling event dynamics is central to many disciplines. Patterns in observed event arrival times are commonly modeled using point processes. Such event arrival data often exhibits self-exciting, heterogeneous and sporadic trends, which is challenging for conventional models. It is reasonable to assume that there exists a hidden state process that drives different event dynamics at different states. In this paper, we propose a Markov Modulated Hawkes Process (MMHP) model for learning such a mixture of event dynamics and develop corresponding inference algorithms. Numerical experiments using synthetic data demonstrate that MMHP with the proposed estimation algorithms consistently recover the true hidden state process in simulations, while email data from a large university and data from an animal behavior study show that the procedure captures distinct event dynamics that reveal interesting social structures in the real data.

Summary

We haven't generated a summary for this paper yet.