Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

ABC Learning of Hawkes Processes with Missing or Noisy Event Times (2006.09015v3)

Published 16 Jun 2020 in stat.AP

Abstract: The self-exciting Hawkes process is widely used to model events which occur in bursts. However, many real world data sets contain missing events and/or noisily observed event times, which we refer to as data distortion. The presence of such distortion can severely bias the learning of the Hawkes process parameters. To circumvent this, we propose modeling the distortion function explicitly. This leads to a model with an intractable likelihood function which makes it difficult to deploy standard parameter estimation techniques. As such, we develop the ABC-Hawkes algorithm which is a novel approach to estimation based on Approximate Bayesian Computation (ABC) and Markov Chain Monte Carlo. This allows the parameters of the Hawkes process to be learned in settings where conventional methods induce substantial bias or are inapplicable. The proposed approach is shown to perform well on both real and simulated data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.