Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Fluctuations of the spectrum in rotationally invariant random matrix ensembles (1912.11518v2)

Published 24 Dec 2019 in math.PR, math-ph, and math.MP

Abstract: We investigate traces of powers of random matrices whose distributions are invariant under rotations (with respect to the Hilbert--Schmidt inner product) within a real-linear subspace of the space of $n\times n$ matrices. The matrices we consider may be real or complex, and Hermitian, antihermitian, or general. We use Stein's method to prove multivariate central limit theorems, with convergence rates, for these traces of powers, which imply central limit theorems for polynomial linear eigenvalue statistics. In contrast to the usual situation in random matrix theory, in our approach general, nonnormal matrices turn out to be easier to study than Hermitian matrices.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.