Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

The Spectra of Principal Submatrices in Rotationally Invariant Hermitian Random Matrices and the Markov-Krein Correspondence (2103.09025v1)

Published 16 Mar 2021 in math.PR

Abstract: We prove a concentration phenomenon on the empirical eigenvalue distribution (EED) of the principal submatrix in a random hermitian matrix whose distribution is invariant under unitary conjugacy; for example, this class includes GUE (Gaussian Unitary Ensemble) and Wishart matrices. More precisely, if the EED of the whole matrix converges to some deterministic probability measure $\mathfrak{m}$, then its fluctuation from the EED of the principal submatrix, after a rescaling, concentrates at the Rayleigh measure (in general, a Schwartz distribution) associated with $\mathfrak{m}$ by the Markov--Krein correspondence. For the proof, we use the moment method with Weingarten calculus and free probability. At some stage of calculations, the proof requires a relation between the moments of the Rayleigh measure and free cumulants of $\mathfrak{m}$. This formula is more or less known, but we provide a different proof by observing a combinatorial structure of non-crossing partitions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube