The Spectra of Principal Submatrices in Rotationally Invariant Hermitian Random Matrices and the Markov-Krein Correspondence (2103.09025v1)
Abstract: We prove a concentration phenomenon on the empirical eigenvalue distribution (EED) of the principal submatrix in a random hermitian matrix whose distribution is invariant under unitary conjugacy; for example, this class includes GUE (Gaussian Unitary Ensemble) and Wishart matrices. More precisely, if the EED of the whole matrix converges to some deterministic probability measure $\mathfrak{m}$, then its fluctuation from the EED of the principal submatrix, after a rescaling, concentrates at the Rayleigh measure (in general, a Schwartz distribution) associated with $\mathfrak{m}$ by the Markov--Krein correspondence. For the proof, we use the moment method with Weingarten calculus and free probability. At some stage of calculations, the proof requires a relation between the moments of the Rayleigh measure and free cumulants of $\mathfrak{m}$. This formula is more or less known, but we provide a different proof by observing a combinatorial structure of non-crossing partitions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.