Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Limiting Spectral Measures for Random Matrix Ensembles with a Polynomial Link Function (1411.3442v1)

Published 13 Nov 2014 in math.PR

Abstract: Consider the ensembles of real symmetric Toeplitz matrices and real symmetric Hankel matrices whose entries are i.i.d. random variables chosen from a fixed probability distribution p of mean 0, variance 1, and finite higher moments. Previous work on real symmetric Toeplitz matrices shows that the spectral measures, or densities of normalized eigenvalues, converge almost surely to a universal near-Gaussian distribution, while previous work on real symmetric Hankel matrices shows that the spectral measures converge almost surely to a universal non-unimodal distribution. Real symmetric Toeplitz matrices are constant along the diagonals, while real symmetric Hankel matrices are constant along the skew diagonals. We generalize the Toeplitz and Hankel matrices to study matrices that are constant along some curve described by a real-valued bivariate polynomial. Using the Method of Moments and an analysis of the resulting Diophantine equations, we show that the spectral measures associated with linear bivariate polynomials converge in probability and almost surely to universal non-semicircular distributions. We prove that these limiting distributions approach the semicircle in the limit of large values of the polynomial coefficients. We then prove that the spectral measures associated with the sum or difference of any two real-valued polynomials with different degrees converge in probability and almost surely to a universal semicircular distribution.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube