Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Fluid Flow Mass Transport for Generative Networks (1910.01694v2)

Published 3 Oct 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Generative Adversarial Networks have been shown to be powerful in generating content. To this end, they have been studied intensively in the last few years. Nonetheless, training these networks requires solving a saddle point problem that is difficult to solve and slowly converging. Motivated from techniques in the registration of point clouds and by the fluid flow formulation of mass transport, we investigate a new formulation that is based on strict minimization, without the need for the maximization. The formulation views the problem as a matching problem rather than an adversarial one and thus allows us to quickly converge and obtain meaningful metrics in the optimization path.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.