Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Closer Look at the Optimization Landscapes of Generative Adversarial Networks

Published 11 Jun 2019 in cs.LG and stat.ML | (1906.04848v3)

Abstract: Generative adversarial networks have been very successful in generative modeling, however they remain relatively challenging to train compared to standard deep neural networks. In this paper, we propose new visualization techniques for the optimization landscapes of GANs that enable us to study the game vector field resulting from the concatenation of the gradient of both players. Using these visualization techniques we try to bridge the gap between theory and practice by showing empirically that the training of GANs exhibits significant rotations around Local Stable Stationary Points (LSSP), similar to the one predicted by theory on toy examples. Moreover, we provide empirical evidence that GAN training converge to a stable stationary point which is a saddle point for the generator loss, not a minimum, while still achieving excellent performance.

Citations (64)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.