Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Training generative networks using random discriminators (1904.09775v1)

Published 22 Apr 2019 in cs.LG, cs.AI, and stat.ML

Abstract: In recent years, Generative Adversarial Networks (GANs) have drawn a lot of attentions for learning the underlying distribution of data in various applications. Despite their wide applicability, training GANs is notoriously difficult. This difficulty is due to the min-max nature of the resulting optimization problem and the lack of proper tools of solving general (non-convex, non-concave) min-max optimization problems. In this paper, we try to alleviate this problem by proposing a new generative network that relies on the use of random discriminators instead of adversarial design. This design helps us to avoid the min-max formulation and leads to an optimization problem that is stable and could be solved efficiently. The performance of the proposed method is evaluated using handwritten digits (MNIST) and Fashion products (Fashion-MNIST) data sets. While the resulting images are not as sharp as adversarial training, the use of random discriminator leads to a much faster algorithm as compared to the adversarial counterpart. This observation, at the minimum, illustrates the potential of the random discriminator approach for warm-start in training GANs.

Citations (4)

Summary

We haven't generated a summary for this paper yet.