Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Synthetic Data and Deep Networks to Recognize Primitive Shapes for Object Grasping (1909.08508v1)

Published 12 Sep 2019 in cs.CV and cs.RO

Abstract: A segmentation-based architecture is proposed to decompose objects into multiple primitive shapes from monocular depth input for robotic manipulation. The backbone deep network is trained on synthetic data with 6 classes of primitive shapes generated by a simulation engine. Each primitive shape is designed with parametrized grasp families, permitting the pipeline to identify multiple grasp candidates per shape primitive region. The grasps are priority ordered via proposed ranking algorithm, with the first feasible one chosen for execution. On task-free grasping of individual objects, the method achieves a 94% success rate. On task-oriented grasping, it achieves a 76% success rate. Overall, the method supports the hypothesis that shape primitives can support task-free and task-relevant grasp prediction.

Citations (37)

Summary

We haven't generated a summary for this paper yet.