Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ICGNet: A Unified Approach for Instance-Centric Grasping (2401.09939v2)

Published 18 Jan 2024 in cs.RO and cs.CV

Abstract: Accurate grasping is the key to several robotic tasks including assembly and household robotics. Executing a successful grasp in a cluttered environment requires multiple levels of scene understanding: First, the robot needs to analyze the geometric properties of individual objects to find feasible grasps. These grasps need to be compliant with the local object geometry. Second, for each proposed grasp, the robot needs to reason about the interactions with other objects in the scene. Finally, the robot must compute a collision-free grasp trajectory while taking into account the geometry of the target object. Most grasp detection algorithms directly predict grasp poses in a monolithic fashion, which does not capture the composability of the environment. In this paper, we introduce an end-to-end architecture for object-centric grasping. The method uses pointcloud data from a single arbitrary viewing direction as an input and generates an instance-centric representation for each partially observed object in the scene. This representation is further used for object reconstruction and grasp detection in cluttered table-top scenes. We show the effectiveness of the proposed method by extensively evaluating it against state-of-the-art methods on synthetic datasets, indicating superior performance for grasping and reconstruction. Additionally, we demonstrate real-world applicability by decluttering scenes with varying numbers of objects.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. A. Cangelosi, J. Bongard, M. H. Fischer, and S. Nolfi, “Embodied intelligence,” Springer handbook of computational intelligence, pp. 697–714, 2015.
  2. J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics,” arXiv preprint arXiv:1703.09312, 2017.
  3. M. Gualtieri, A. ten Pas, K. Saenko, and R. W. Platt, “High precision grasp pose detection in dense clutter,” 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 598–605, 2016.
  4. M. Breyer, J. J. Chung, L. Ott, R. Y. Siegwart, and J. I. Nieto, “Volumetric grasping network: Real-time 6 dof grasp detection in clutter,” in Conference on Robot Learning (CoRL), 2021.
  5. M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox, “Contact-graspnet: Efficient 6-dof grasp generation in cluttered scenes,” 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 13 438–13 444, 2021.
  6. H. Huang, D. Wang, X. Zhu, R. Walters, and R. Platt, “Edge grasp network: A graph-based se (3)-invariant approach to grasp detection,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 3882–3888.
  7. M. Van der Merwe, Q. Lu, B. Sundaralingam, M. Matak, and T. Hermans, “Learning continuous 3d reconstructions for geometrically aware grasping,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 11 516–11 522.
  8. Z. Jiang, Y. Zhu, M. Svetlik, K. Fang, and Y. Zhu, “Synergies between affordance and geometry: 6-dof grasp detection via implicit representations,” Robotics: science and systems (RSS), 2021.
  9. A. Mousavian, C. Eppner, and D. Fox, “6-dof graspnet: Variational grasp generation for object manipulation,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019.
  10. N. Chavan-Dafle, S. Popovych, S. Agrawal, D. D. Lee, and V. Isler, “Simultaneous object reconstruction and grasp prediction using a camera-centric object shell representation,” 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1396–1403, 2021.
  11. Y. Li, T. Kong, R. Chu, Y. Li, P. Wang, and L. Li, “Simultaneous semantic and collision learning for 6-dof grasp pose estimation,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 3571–3578.
  12. A. Murali, A. Mousavian, C. Eppner, C. Paxton, and D. Fox, “6-dof grasping for target-driven object manipulation in clutter,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 6232–6238.
  13. Y. Yang, H. Liang, and C. Choi, “A deep learning approach to grasping the invisible,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2232–2239, 2020.
  14. M. Danielczuk, A. Kurenkov, A. Balakrishna, M. Matl, D. Wang, R. Martín-Martín, A. Garg, S. Savarese, and K. Goldberg, “Mechanical search: Multi-step retrieval of a target object occluded by clutter,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 1614–1621.
  15. X. Lou, Y. Yang, and C. Choi, “Collision-aware target-driven object grasping in constrained environments,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 6364–6370.
  16. R. Newbury, M. Gu, L. Chumbley, A. Mousavian, C. Eppner, J. Leitner, J. Bohg, A. Morales, T. Asfour, D. Kragic, et al., “Deep learning approaches to grasp synthesis: A review,” IEEE Transactions on Robotics (T-RO), 2023.
  17. P. Raj, A. Kumar, V. Sanap, T. Sandhan, and L. Behera, “Towards object agnostic and robust 4-dof table-top grasping,” in 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE), 2022, pp. 963–970.
  18. H. Liang, X. Ma, S. Li, M. Görner, S. Tang, B. Fang, F. Sun, and J. Zhang, “Pointnetgpd: Detecting grasp configurations from point sets,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 3629–3635.
  19. J. Varley, C. DeChant, A. Richardson, J. Ruales, and P. Allen, “Shape completion enabled robotic grasping,” in 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS).   IEEE, 2017, pp. 2442–2447.
  20. A. T. Miller and P. K. Allen, “Graspit! a versatile simulator for robotic grasping,” IEEE Robotics & Automation Magazine, vol. 11, no. 4, pp. 110–122, 2004.
  21. S. Peng, M. Niemeyer, L. Mescheder, M. Pollefeys, and A. Geiger, “Convolutional occupancy networks,” in European Conference on Computer Vision (ECCV), 2020.
  22. K.-Y. Jeng, Y.-C. Liu, Z. Y. Liu, J.-W. Wang, Y.-L. Chang, H.-T. Su, and W. Hsu, “Gdn: A coarse-to-fine (c2f) representation for end-to-end 6-dof grasp detection,” in Conference on Robot Learning.   PMLR, 2021, pp. 220–231.
  23. M. Breyer, L. Ott, R. Siegwart, and J. J. Chung, “Closed-loop next-best-view planning for target-driven grasping,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 1411–1416.
  24. C. Choy, J. Gwak, and S. Savarese, “4d spatio-temporal convnets: Minkowski convolutional neural networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 3075–3084.
  25. Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3d u-net: learning dense volumetric segmentation from sparse annotation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 19.   Springer, 2016, pp. 424–432.
  26. J. Schult, F. Engelmann, A. Hermans, O. Litany, S. Tang, and B. Leibe, “Mask3d: Mask transformer for 3d semantic instance segmentation,” in International Conference on Robotics and Automation (ICRA), 2023.
  27. L. M. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger, “Occupancy networks: Learning 3d reconstruction in function space,” 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4455–4465, 2018.
  28. C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d classification and segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), 2017, pp. 652–660.
  29. M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ramamoorthi, J. Barron, and R. Ng, “Fourier features let networks learn high frequency functions in low dimensional domains,” Advances in Neural Information Processing Systems, vol. 33, pp. 7537–7547, 2020.
  30. I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv preprint arXiv:1711.05101, 2017.
  31. I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm restarts,” arXiv preprint arXiv:1608.03983, 2016.
  32. B. Calli, A. Singh, J. Bruce, A. Walsman, K. Konolige, S. Srinivasa, P. Abbeel, and A. M. Dollar, “Yale-cmu-berkeley dataset for robotic manipulation research,” The International Journal of Robotics Research (T-RO), vol. 36, no. 3, pp. 261–268, 2017.
  33. A. Kasper, Z. Xue, and R. Dillmann, “The kit object models database: An object model database for object recognition, localization and manipulation in service robotics,” The International Journal of Robotics Research (T-RO), vol. 31, no. 8, pp. 927–934, 2012.
  34. A. Singh, J. Sha, K. S. Narayan, T. Achim, and P. Abbeel, “Bigbird: A large-scale 3d database of object instances,” 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 509–516, 2014.
  35. L. Downs, A. Francis, N. Koenig, B. Kinman, R. Hickman, K. Reymann, T. B. McHugh, and V. Vanhoucke, “Google scanned objects: A high-quality dataset of 3d scanned household items,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 2553–2560.
  36. G. van Tulder. (2021) elasticdeform: Elastic deformations for N-dimensional images. Zenodo. [Online]. Available: https://doi.org/10.5281/zenodo.4569691
  37. Q.-Y. Zhou, J. Park, and V. Koltun, “Open3d: A modern library for 3d data processing,” arXiv preprint arXiv:1801.09847, 2018.
  38. D. Coleman, I. Sucan, S. Chitta, and N. Correll, “Reducing the barrier to entry of complex robotic software: a moveit! case study,” Journal of Software Engineering for Robotics, 2014.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. René Zurbrügg (12 papers)
  2. Yifan Liu (135 papers)
  3. Francis Engelmann (37 papers)
  4. Suryansh Kumar (37 papers)
  5. Marco Hutter (165 papers)
  6. Vaishakh Patil (9 papers)
  7. Fisher Yu (104 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com