Papers
Topics
Authors
Recent
2000 character limit reached

Transfer in Deep Reinforcement Learning using Knowledge Graphs

Published 19 Aug 2019 in cs.CL, cs.AI, and cs.LG | (1908.06556v1)

Abstract: Text adventure games, in which players must make sense of the world through text descriptions and declare actions through text descriptions, provide a stepping stone toward grounding action in language. Prior work has demonstrated that using a knowledge graph as a state representation and question-answering to pre-train a deep Q-network facilitates faster control policy transfer. In this paper, we explore the use of knowledge graphs as a representation for domain knowledge transfer for training text-adventure playing reinforcement learning agents. Our methods are tested across multiple computer generated and human authored games, varying in domain and complexity, and demonstrate that our transfer learning methods let us learn a higher-quality control policy faster.

Citations (29)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.