Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Knowledge-enhanced Agents for Interactive Text Games (2305.05091v2)

Published 8 May 2023 in cs.CL, cs.AI, and cs.HC

Abstract: Communication via natural language is a key aspect of machine intelligence, and it requires computational models to learn and reason about world concepts, with varying levels of supervision. Significant progress has been made on fully-supervised non-interactive tasks, such as question-answering and procedural text understanding. Yet, various sequential interactive tasks, as in text-based games, have revealed limitations of existing approaches in terms of coherence, contextual awareness, and their ability to learn effectively from the environment. In this paper, we propose a knowledge-injection framework for improved functional grounding of agents in text-based games. Specifically, we consider two forms of domain knowledge that we inject into learning-based agents: memory of previous correct actions and affordances of relevant objects in the environment. Our framework supports two representative model classes: reinforcement learning agents and LLM agents. Furthermore, we devise multiple injection strategies for the above domain knowledge types and agent architectures, including injection via knowledge graphs and augmentation of the existing input encoding strategies. We experiment with four models on the 10 tasks in the ScienceWorld text-based game environment, to illustrate the impact of knowledge injection on various model configurations and challenging task settings. Our findings provide crucial insights into the interplay between task properties, model architectures, and domain knowledge for interactive contexts.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com