Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling Worlds in Text (2106.09578v1)

Published 17 Jun 2021 in cs.CL and cs.AI

Abstract: We provide a dataset that enables the creation of learning agents that can build knowledge graph-based world models of interactive narratives. Interactive narratives -- or text-adventure games -- are partially observable environments structured as long puzzles or quests in which an agent perceives and interacts with the world purely through textual natural language. Each individual game typically contains hundreds of locations, characters, and objects -- each with their own unique descriptions -- providing an opportunity to study the problem of giving language-based agents the structured memory necessary to operate in such worlds. Our dataset provides 24198 mappings between rich natural language observations and: (1) knowledge graphs that reflect the world state in the form of a map; (2) natural language actions that are guaranteed to cause a change in that particular world state. The training data is collected across 27 games in multiple genres and contains a further 7836 heldout instances over 9 additional games in the test set. We further provide baseline models using rules-based, question-answering, and sequence learning approaches in addition to an analysis of the data and corresponding learning tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Prithviraj Ammanabrolu (39 papers)
  2. Mark O. Riedl (57 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.