Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Further Inequalities for the Numerical Radius of Hilbert Space Operators (1907.06003v1)

Published 13 Jul 2019 in math.FA

Abstract: In this article, we present some new inequalities for numerical radius of Hilbert space operators via convex functions. Our results generalize and improve earlier results by El-Haddad and Kittaneh. Among several results, we show that if $A\in \mathbb{B}\left( \mathcal{H} \right)$ and $r\ge 2$, then [{{w}{r}}\left( A \right)\le {{\left| A \right|}{r}}-\underset{\left| x \right|=1}{\mathop{\inf }}\,{{\left| {{\left| \left| A \right|-w\left( A \right) \right|}{\frac{r}{2}}}x \right|}{2}}] where $w\left( \cdot \right)$ and $\left| \cdot \right|$ denote the numerical radius and usual operator norm, respectively.

Summary

We haven't generated a summary for this paper yet.