Improvements of Some Numerical radius inequalities (1912.01492v1)
Abstract: In this work, we improve and refine some numerical radius inequalities. In particular, for all Hilbert space operators $T$, the celebrated Kittaneh inequality reads: \begin{align*} \frac{1}{4}\left| T*T + TT*\right|\le w{2 }\left(T \right) \le \frac{1}{2}\left| T*T + TT*\right|. \end{align*} In this work we provide some important refinements for the upper bound of the Kittaned inequality. Indeed, we establish \begin{align*} w{2 }\left(T \right) \le \frac{1}{2}\left| T*T + TT*\right| - \frac{1}{4} \mathop {\inf }\limits_{\left| x \right| = 1} \left( {\left\langle {\left| T \right|x,x} \right\rangle - \left\langle {\left| T* \right|x,x} \right\rangle } \right)2, \end{align*} which also refined and improved as \begin{align*} w{2 }\left(T \right) \le \frac{1}{2}\left| T*T + TT*\right| - \frac{1}{2} \mathop {\inf }\limits_{\left| x \right| = 1} \left( {\left\langle {\left| T \right|x,x} \right\rangle - \left\langle {\left| T* \right|x,x} \right\rangle } \right)2, \end{align*} and \begin{align*} w{2 }\left(T \right) \le \frac{1}{2} \left|TT+TT^ \right| -\frac{1}{2} \mathop {\inf }\limits_{\left| x \right| = 1} \left(\left\langle {\left| T \right|{2 }x,x} \right\rangle{\frac{1}{2}} - \left\langle {\left| T* \right|{2 } x,x} \right\rangle{\frac{1}{2}}\right)2, \end{align*} with third improvement \begin{align*} w2 \left( {T } \right) \le \frac{1}{4 }\left| {\left| T \right| + \left| {T* } \right| } \right|{2} - \frac{1}{{4 }}\mathop {\inf }\limits_{\left| x \right| = 1} \left( {\left\langle {\left| T \right| x,x} \right\rangle - \left\langle {\left| {T* } \right| x,x} \right\rangle } \right)2. \end{align*} Other general related results are also considered.