Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Approximation of Invariant Measures for Stochastic Differential Equations with Piecewise Continuous Arguments via Backward Euler Method (1906.04096v1)

Published 10 Jun 2019 in math.NA and cs.NA

Abstract: For the stochastic differential equation (SDE) which has piecewise continuous arguments (PCAs), is driven by multiplicative noises and its drift coefficients are dissipative, we show that the solution at integer time is a Markov chain and admits a unique invariant measure. In order to inherit numerically the invariant measure of SDE with PCAs, we apply the backward Euler (BE) method to the equation, and prove that the numerical solution at integer time is not only Markovian but also reproduces a unique numerical invariant measure. We present the time-independent weak error analysis for the method under certain hypothesis. Further, we show that the numerical invariant measure converges to the original one with order 1. Numerical experiments verify the theoretical analysis.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.