Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The backward Euler-Maruyama method for invariant measures of stochastic differential equations with super-linear coefficients (2206.09970v2)

Published 20 Jun 2022 in math.PR, cs.NA, and math.NA

Abstract: The backward Euler-Maruyama (BEM) method is employed to approximate the invariant measure of stochastic differential equations, where both the drift and the diffusion coefficient are allowed to grow super-linearly. The existence and uniqueness of the invariant measure of the numerical solution generated by the BEM method are proved and the convergence of the numerical invariant measure to the underlying one is shown. Simulations are provided to illustrate the theoretical results and demonstrate the application of our results in the area of system control.

Citations (16)

Summary

We haven't generated a summary for this paper yet.