Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Numerical Invariant Measure of Stochastic Differential Equations With Markovian Switching (1804.02128v2)

Published 6 Apr 2018 in math.PR, cs.NA, and math.NA

Abstract: The existence and uniqueness of the numerical invariant measure of the backward Euler-Maruyama method for stochastic differential equations with Markovian switching is yielded, and it is revealed that the numerical invariant measure converges to the underlying invariant measure in the Wasserstein metric. Under the polynomial growth condition of drift term the convergence rate is estimated. The global Lipschitz condition on the drift coefficients required by Bao et al., 2016 and Yuan et al., 2005 is released. Several examples and numerical experiments are given to verify our theory.

Citations (28)

Summary

We haven't generated a summary for this paper yet.