Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On transversal connecting orbits of Lagrangian systems in non-stationary force field: Newton-Kantorovich approach (1904.01440v1)

Published 2 Apr 2019 in math.DS

Abstract: We consider a natural Lagrangian system defined on a complete Riemannian manifold being subjected to the action of a non-stationary force field with potential $U(q,t) = f(t)V(q)$. It is assumed that the factor $f(t)$ tends to $\infty$ as $t\to \pm\infty$ and vanishes at a unique point $t_{0}\in \mathbb{R}$. Let $X_{+}$, $X_{-}$ denote the sets of isolated critical points of $V(x)$ at which $U(x,t)$ as a function of $x$ attains its maximum for any fixed $t> t_{0}$ and $t<t_{0}$, respectively. Under nondegeneracy conditions on points of $X_{\pm}$ we apply Newton-Kantorovich type method to study the existence of transversal doubly asymptotic trajectories connecting $X_{-}$ and $X_{+}$. Conditions on the Riemannian manifold and the potential which guarantee the existence of such orbits are presented. Such connecting trajectories are obatained by continuation of geodesics defined in a vicinity of the point $t_{0}$ to the whole real line.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube