Continuity and Harnack inequalities for local minimizers of non uniformly elliptic functionals with generalized Orlicz growth under the non-logarithmic conditions (2210.02178v1)
Abstract: We study the qualitative properties of functions belonging to the corresponding De Giorgi classes \begin{equation*} \int\limits_{B_{r(1-\sigma)}(x_{0})}\,\varPhi(x, |\nabla(u-k){\pm}|)\,dx \leqslant \gamma\,\int\limits{B_{r}(x_{0})}\,\varPhi\bigg(x, \frac{(u-k){\pm}}{\sigma r}\bigg)\,dx, \end{equation*} where $\sigma$, $r \in (0,1)$, $k\in \mathbb{R}$ and the function $\varPhi$ satisfies the non-logarithmic condition \begin{equation*} \bigg(r{-n}\int\limits{B_{r}(x_{0})}[\varPhi\big(x,\frac{v}{r}\big)]{s}\,dx\bigg){\frac{1}{s}}\bigg(r{-n}\int\limits_{B_{r}(x_{0})}[\varPhi\big(x,\frac{v}{r}\big)]{-t}\,dx\bigg){\frac{1}{t}}\leqslant c(K) \Lambda(x_{0},r),\quad r\leqslant v\leqslant K\,\lambda(r), \end{equation*} under some assumptions on the functions $\lambda(r)$ and $\Lambda(x_{0}, r)$ and the numbers $s$, $t >1$. These conditions generalize the known logarithmic, non-logarithmic and non uniformly elliptic conditions. In particular, our results cover new cases of non uniformly elliptic double-phase, degenerate double-phase functionals and functionals with variable exponents.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.