On the continuity of solutions of quasilinear parabolic equations with generalized Orlicz growth under non-logarithmic conditions (2102.01550v1)
Abstract: We prove the continuity of bounded solutions for a wide class of parabolic equations with $(p,q)$-growth $$ u_{t}-{\rm div}\left(g(x,t,|\nabla u|)\,\frac{\nabla u}{|\nabla u|}\right)=0, $$ under the generalized non-logarithmic Zhikov's condition $$ g(x,t,{\rm v}/r)\leqslant c(K)\,g(y,\tau,{\rm v}/r), \quad (x,t), (y,\tau)\in Q_{r,r}(x_{0},t_{0}), \quad 0<{\rm v}\leqslant K\lambda(r), $$ $$ \quad \lim\limits_{r\rightarrow0}\lambda(r)=0, \quad \lim\limits_{r\rightarrow0} \frac{\lambda(r)}{r}=+\infty, \quad \int_{0} \lambda(r)\,\frac{dr}{r}=+\infty. $$ In particular, our results cover new cases of double-phase parabolic equations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.