Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

The semiclassical limit of Liouville conformal field theory (1903.08883v1)

Published 21 Mar 2019 in math.PR, math-ph, and math.MP

Abstract: A rigorous probabilistic construction of Liouville conformal field theory (LCFT) on the Riemann sphere was recently given by David-Kupiainen and the last two authors. In this paper, we focus on the connection between LCFT and the classical Liouville field theory via the semiclassical approach. LCFT depends on a parameter $\gamma \in (0,2)$ and the limit $\gamma \to 0$ corresponds to the semiclassical limit of the theory. Within this asymptotic and under a negative curvature condition (on the limiting metric of the theory), we determine the limit of the correlation functions and of the associated Liouville field. We also establish a large deviation result for the Liouville field: as expected, the large deviation functional is the classical Liouville action. As a corollary, we give a new (probabilistic) proof of the Takhtajan-Zograf theorem which relates the classical Liouville action (taken at its minimum) to Poincar\'e's accessory parameters. Finally, we gather conjectures in the positive curvature case (including the study of the so-called quantum spheres introduced by Duplantier-Miller-Sheffield).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.