Papers
Topics
Authors
Recent
2000 character limit reached

Stochastic quantization of Liouville conformal field theory

Published 8 Apr 2020 in math.AP, math-ph, math.MP, and math.PR | (2004.04194v2)

Abstract: We study a nonlinear stochastic heat equation forced by a space-time white noise on closed surfaces, with nonlinearity $e{\beta u}$. This equation corresponds to the stochastic quantization of the Liouville quantum gravity (LQG) measure. (i) We first revisit the construction of the LQG measure in Liouville conformal field theory (LCFT) in the $L2$ regime $0<\beta<\sqrt{2}$. This uniformizes in this regime the approaches of David-Kupiainen-Rhodes-Vargas (2016), David-Rhodes-Vargas (2016) and Guillarmou-Rhodes-Vargas (2019) which treated the case of a closed surface with genus 0, 1 and $> 1$ respectively. Moreover, our argument shows that this measure is independent of the approximation procedure for a large class of smooth approximations. (ii) We prove almost sure global well-posedness of the parabolic stochastic dynamics, and invariance of the measure under this stochastic flow. In particular, our results improve previous results obtained by Garban (2020) in the cases of the sphere and the torus with their canonical metric, and are new in the case of closed surfaces with higher genus.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.