Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Semiclassical limit of Liouville Field Theory (1401.6001v3)

Published 23 Jan 2014 in math.PR, math-ph, and math.MP

Abstract: Liouville Field Theory (LFT for short) is a two dimensional model of random surfaces, which is for instance involved in $2d$ string theory or in the description of the fluctuations of metrics in $2d$ Liouville quantum gravity. This is a probabilistic model that consists in weighting the classical Free Field action with an interaction term given by the exponential of a Gaussian multiplicative chaos. The main input of our work is the study of the semiclassical limit of the theory, which is a prescribed asymptotic regime of LFT of interest in physics literature (see \cite{witten} and references therein). We derive exact formulas for the Laplace transform of the Liouville field in the case of flat metric on the unit disk with Dirichlet boundary conditions. As a consequence, we prove that the Liouville field concentrates on the solution of the classical Liouville equation with explicit negative scalar curvature. We also characterize the leading fluctuations, which are Gaussian and massive, and establish a large deviation principle. Though considered as an ansatz in the whole physics literature, it seems that it is the first rigorous probabilistic derivation of the semiclassical limit of LFT. On the other hand, we carry out the same analysis when we further weight the Liouville action with heavy matter operators. This procedure appears when computing the $n$-points correlation functions of LFT.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.