2000 character limit reached
Remarques sur une somme liée à la fonction de Möbius
Published 26 Feb 2019 in math.NT | (1902.09956v6)
Abstract: For integer $n\geqslant 1$ and real number $z\geqslant 1$, define $M(n,z):=\sum_{d|n,\,d\leqslant z}\mu(d)$ where $\mu$ denotes the M\"obius function. Put ${\cal L}(y):=\exp\left{(\log y){3/5}/(\log_2y){1/5}\right}$ $(y\geqslant 3)$. We show that, for a suitable, explicit, constant $L>0$ and some absolute $c>0$, we have $S(x,z)= Lx+O\left({x/{\cal L}(3\xi)c}\right)$ uniformly for $x\geqslant 1$, $\xi\leqslant z\leqslant x/\xi$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.