Papers
Topics
Authors
Recent
Search
2000 character limit reached

Remarques sur une somme liée à la fonction de Möbius

Published 26 Feb 2019 in math.NT | (1902.09956v6)

Abstract: For integer $n\geqslant 1$ and real number $z\geqslant 1$, define $M(n,z):=\sum_{d|n,\,d\leqslant z}\mu(d)$ where $\mu$ denotes the M\"obius function. Put ${\cal L}(y):=\exp\left{(\log y){3/5}/(\log_2y){1/5}\right}$ $(y\geqslant 3)$. We show that, for a suitable, explicit, constant $L>0$ and some absolute $c>0$, we have $S(x,z)= Lx+O\left({x/{\cal L}(3\xi)c}\right)$ uniformly for $x\geqslant 1$, $\xi\leqslant z\leqslant x/\xi$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.