L^p Estimates for Semi-Degenerate Simplex Multipliers (1609.05964v2)
Abstract: Muscalu, Tao, and Thiele prove $Lp$ estimates for the "Biest" operator defined on Schwartz functions by the map \begin{align*} \hspace{5mm} C{1,1,1}:& (f_1, f_2, f_3) \mapsto \int_{\xi_1 < \xi_2< \xi_3} \left[ \prod_{j=1}3 \hat{f}j (\xi_j) e{2 \pi i x \xi_j } \right] d \vec{\xi} \end{align*} via a time-frequency argument that produces bounds for all multipliers with non-degenerate trilinear simplex symbols. In this article we prove $Lp$ estimates for a pair of simplex multipliers for which the non-degeneracy condition fails and which are defined on Schwartz functions by the maps \begin{align*} C{1,1,-2}:& (f_1, f_2, f_3) \mapsto \int{\xi_1 <\xi_2 < -\frac{\xi_3}{2}}\left[ \prod_{j=1}3 \hat{f}j (\xi_j) e{2 \pi i x \xi_j } \right] d \vec{\xi} \end{align*} \begin{align*} C{1,1,1,-2}:& (f_1, f_2, f_3, f_4) \mapsto \int{\xi_1 <\xi_2 < \xi_3< -\frac{\xi_4}{2}} \left[\prod_{j=1}4 \hat{f}_j (\xi_j) e{2 \pi i x \xi_j} \right] d \vec{\xi}. \end{align*} Our argument combines the standard $\ell2$-based energy with an $\ell1$-based energy in order to enable summability over various size parameters. As a consequence, we obtain that $C{1,1,-2}$ maps into $Lp$ for all $1/2< p < \infty$ and $C{1,1,1,-2}$ maps into $Lp$ for all $1/3 < p < \infty$. Both target $Lp$ ranges are shown to be sharp.