Non-smooth unobservable states in control problem for the wave equation in ${\mathbb R}^3$ (corrected) (1311.6131v1)
Abstract: The paper deals with a dynamical system \begin{align*} &u_{tt}-\Delta u=0, \qquad (x,t) \in {\mathbb R}3 \times (-\infty,0) \ &u \mid_{|x|<-t} =0 , \qquad t<0\ &\lim_{s \to \infty} su((s+\tau)\omega,-s)=f(\tau,\omega), \qquad (\tau,\omega) \in [0,\infty)\times S2\,, \end{align*} where $u=uf(x,t)$ is a solution ({\it wave}), $f \in {\cal F} :=L_2\left([0,\infty);L_2\left(S2\right)\right)$ is a {\it control}. For the reachable sets ${\cal U}\xi:={uf(\cdot, -\xi)\,|\,\, f \in {\cal F}}\,\,(\xi\geqslant 0)$, the embedding ${\cal U}\xi \subset {\cal H}\xi:={y \in L_2({\mathbb R}3)\,|\,\,\,y|_{|x|<\xi}=0}$ holds, whereas the subspaces ${\cal D}\xi:={\cal H}\xi \ominus {\cal U}\xi$ of unreachable ({\it unobservable}) states are nonzero for $\xi> 0$. There was a conjecture motivated by some geometrical optics arguments that the elements of ${\cal D}\xi$ are $C\infty$-smooth with respect to $|x|$. We provide rather unexpected counterexamples of $h\in {\cal D}\xi$ with ${\rm sing\,supp\,}h \subset {x\in{\mathbb R}3|\,\,|x|=\xi_0>\xi}$.