Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 73 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Exponentiated Gradient Meets Gradient Descent (1902.01903v1)

Published 5 Feb 2019 in cs.LG, math.OC, and stat.ML

Abstract: The (stochastic) gradient descent and the multiplicative update method are probably the most popular algorithms in machine learning. We introduce and study a new regularization which provides a unification of the additive and multiplicative updates. This regularization is derived from an hyperbolic analogue of the entropy function, which we call hypentropy. It is motivated by a natural extension of the multiplicative update to negative numbers. The hypentropy has a natural spectral counterpart which we use to derive a family of matrix-based updates that bridge gradient methods and the multiplicative method for matrices. While the latter is only applicable to positive semi-definite matrices, the spectral hypentropy method can naturally be used with general rectangular matrices. We analyze the new family of updates by deriving tight regret bounds. We study empirically the applicability of the new update for settings such as multiclass learning, in which the parameters constitute a general rectangular matrix.

Citations (42)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.