Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A fast Multiplicative Updates algorithm for Non-negative Matrix Factorization (2303.17992v2)

Published 31 Mar 2023 in math.OC and cs.LG

Abstract: Nonnegative Matrix Factorization is an important tool in unsupervised machine learning to decompose a data matrix into a product of parts that are often interpretable. Many algorithms have been proposed during the last three decades. A well-known method is the Multiplicative Updates algorithm proposed by Lee and Seung in 2002. Multiplicative updates have many interesting features: they are simple to implement and can be adapted to popular variants such as sparse Nonnegative Matrix Factorization, and, according to recent benchmarks, is state-of-the-art for many problems where the loss function is not the Frobenius norm. In this manuscript, we propose to improve the Multiplicative Updates algorithm seen as an alternating majorization minimization algorithm by crafting a tighter upper bound of the Hessian matrix for each alternate subproblem. Convergence is still ensured and we observe in practice on both synthetic and real world dataset that the proposed fastMU algorithm is often several orders of magnitude faster than the regular Multiplicative Updates algorithm, and can even be competitive with state-of-the-art methods for the Frobenius loss.

Citations (1)

Summary

We haven't generated a summary for this paper yet.