Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attenuating Bias in Word Vectors (1901.07656v1)

Published 23 Jan 2019 in cs.CL

Abstract: Word vector representations are well developed tools for various NLP and Machine Learning tasks and are known to retain significant semantic and syntactic structure of languages. But they are prone to carrying and amplifying bias which can perpetrate discrimination in various applications. In this work, we explore new simple ways to detect the most stereotypically gendered words in an embedding and remove the bias from them. We verify how names are masked carriers of gender bias and then use that as a tool to attenuate bias in embeddings. Further, we extend this property of names to show how names can be used to detect other types of bias in the embeddings such as bias based on race, ethnicity, and age.

Citations (142)

Summary

We haven't generated a summary for this paper yet.