Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On Conjectural Rank Parities of Quartic and Sextic Twists of Elliptic Curves (1809.04244v2)

Published 12 Sep 2018 in math.NT

Abstract: We study the behavior under twisting of the Selmer rank parities of a self-dual prime-degree isogeny on a principally polarized abelian variety defined over a number field, subject to compatibility relations between the twists and the isogeny. In particular, we study isogenies on abelian varieties whose Selmer rank parities are related to the rank parities of elliptic curves with $j$-invariant 0 or 1728, assuming the Shafarevich-Tate conjecture. Using these results, we show how to classify the conjectural rank parities of all quartic or sextic twists of an elliptic curve defined over a number field, after a finite calculation. This generalizes previous results of Hadian and Weidner on the behavior of $p$-Selmer ranks under $p$-twists.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube