Papers
Topics
Authors
Recent
Search
2000 character limit reached

Disparity in Selmer ranks of quadratic twists of elliptic curves

Published 9 Nov 2011 in math.NT | (1111.2321v4)

Abstract: We study the parity of 2-Selmer ranks in the family of quadratic twists of an arbitrary elliptic curve E over an arbitrary number field K. We prove that the fraction of twists (of a given elliptic curve over a fixed number field) having even 2-Selmer rank exists as a stable limit over the family of twists, and we compute this fraction as an explicit product of local factors. We give an example of an elliptic curve E such that as K varies, these fractions are dense in [0, 1]. More generally, our results also apply to p-Selmer ranks of twists of 2-dimensional self-dual F_p-representations of the absolute Galois group of K by characters of order p.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.