Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Automatic differentiation for error analysis of Monte Carlo data (1809.01289v2)

Published 5 Sep 2018 in hep-lat, physics.comp-ph, and physics.data-an

Abstract: Automatic Differentiation (AD) allows to determine exactly the Taylor series of any function truncated at any order. Here we propose to use AD techniques for Monte Carlo data analysis. We discuss how to estimate errors of a general function of measured observables in different Monte Carlo simulations. Our proposal combines the $\Gamma$-method with Automatic differentiation, allowing exact error propagation in arbitrary observables, even those defined via iterative algorithms. The case of special interest where we estimate the error in fit parameters is discussed in detail. We also present a freely available fortran reference implementation of the ideas discussed in this work.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)