Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Automatic differentiation for Lax-Wendroff-type discretizations (2506.11719v1)

Published 13 Jun 2025 in math.NA, cs.NA, and physics.comp-ph

Abstract: Lax-Wendroff methods combined with discontinuous Galerkin/flux reconstruction spatial discretization provide a high-order, single-stage, quadrature-free method for solving hyperbolic conservation laws. In this work, we introduce automatic differentiation (AD) in the element-local time average flux computation step (the predictor step) of Lax-Wendroff methods. The application of AD is similar for methods of any order and does not need positivity corrections during the predictor step. This contrasts with the approximate Lax-Wendroff procedure, which requires different finite difference formulas for different orders of the method and positivity corrections in the predictor step for fluxes that can only be computed on admissible states. The method is Jacobian-free and problem-independent, allowing direct application to any physical flux function. Numerical experiments demonstrate the order and positivity preservation of the method. Additionally, performance comparisons indicate that the wall-clock time of automatic differentiation is always on par with the approximate Lax-Wendroff method.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.