Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 53 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 146 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Stability and approximation of statistical limit laws for multidimensional piecewise expanding maps (1808.09524v2)

Published 28 Aug 2018 in math.DS

Abstract: The unpredictability of chaotic nonlinear dynamics leads naturally to statistical descriptions, including probabilistic limit laws such as the central limit theorem and large deviation principle. A key tool in the Nagaev-Guivarc'h spectral method for establishing statistical limit theorems is a "twisted" transfer operator. In the abstract setting of Keller-Liverani we prove that derivatives of all orders of the leading eigenvalues and eigenprojections of the twisted transfer operators with respect to the twist parameter are stable when subjected to a broad class of perturbations. As a result, we demonstrate stability of the variance in the central limit theorem and the rate function from a large deviation principle with respect to deterministic and stochastic perturbations of the dynamics and perturbations induced by numerical schemes. We apply these results to piecewise expanding maps in one and multiple dimensions, including new convergence results for Ulam projections on quasi-H\"older spaces.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.