Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sharp Statistical Properties for a Family of Multidimensional NonMarkovian Nonconformal Intermittent Maps (1904.03184v3)

Published 2 Apr 2019 in math.DS

Abstract: Intermittent maps of Pomeau-Manneville type are well-studied in one-dimension, and also in higher dimensions if the map happens to be Markov. In general, the nonconformality of multidimensional intermittent maps represents a challenge that up to now is only partially addressed. We show how to prove sharp polynomial bounds on decay of correlations for a class of multidimensional intermittent maps. In addition we show that the optimal results on statistical limit laws for one-dimensional intermittent maps hold also for the maps considered here. This includes the (functional) central limit theorem and local limit theorem, Berry-Esseen estimates, large deviation estimates, convergence to stable laws and L\'evy processes, and infinite measure mixing.

Summary

We haven't generated a summary for this paper yet.