Papers
Topics
Authors
Recent
2000 character limit reached

Spectral Galerkin methods for transfer operators in uniformly expanding dynamics

Published 12 May 2017 in math.DS, cs.NA, math.NA, and nlin.CD | (1705.04431v4)

Abstract: Markov expanding maps, a class of simple chaotic systems, are commonly used as models for chaotic dynamics, but existing numerical methods to study long-time statistical properties such as invariant measures have a poor trade-off between computational effort and accuracy. We develop a spectral Galerkin method for these maps' transfer operators, estimating statistical quantities using finite submatrices of the transfer operators' infinite Fourier or Chebyshev basis coefficient matrices. Rates of convergence of these estimates are obtained via quantitative bounds on the full transfer operator matrix entries; we find the method furnishes up to exponentially accurate estimates of statistical properties in only a polynomially large computational time. To implement these results we suggest and demonstrate two algorithms: a rigorously-validated algorithm, and a fast, more convenient adaptive algorithm. Using the first algorithm we prove rigorous bounds on some exemplar quantities that are substantially more accurate than previous. We show that the adaptive algorithm can produce double floating-point accuracy estimates in a fraction of a second on a personal computer.

Citations (31)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.