Quantitative Statistical Stability for the Equilibrium States of Piecewise Partially Hyperbolic Maps (2008.05679v6)
Abstract: We consider a class of endomorphisms that contains a set of piecewise partially hyperbolic dynamics semi-conjugated to non-uniformly expanding maps. Our goal is to study a class of endomorphisms that preserve a foliation that is almost everywhere uniformly contracted, with possible discontinuity sets parallel to the contracting direction. We apply the spectral gap property and the $\zeta$-H\"older regularity of the disintegration of its equilibrium states to prove a quantitative statistical stability statement. More precisely, under deterministic perturbations of the system of size $\delta$, we show that the $F$-invariant measure varies continuously with respect to a suitable anisotropic norm. Moreover, we prove that for certain interesting classes of perturbations, its modulus of continuity is $O(\delta\zeta \log \delta)$. This article has been accepted for publication in the Discrete and Continuous Dynamical Systems journal.