Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Motorcycle Classification in Urban Scenarios using Convolutional Neural Networks for Feature Extraction (1808.09273v1)

Published 28 Aug 2018 in cs.CV

Abstract: This paper presents a motorcycle classification system for urban scenarios using Convolutional Neural Network (CNN). Significant results on image classification has been achieved using CNNs at the expense of a high computational cost for training with thousands or even millions of examples. Nevertheless, features can be extracted from CNNs already trained. In this work AlexNet, included in the framework CaffeNet, is used to extract features from frames taken on a real urban scenario. The extracted features from the CNN are used to train a support vector machine (SVM) classifier to discriminate motorcycles from other road users. The obtained results show a mean accuracy of 99.40% and 99.29% on a classification task of three and five classes respectively. Further experiments are performed on a validation set of images showing a satisfactory classification.

Citations (4)

Summary

We haven't generated a summary for this paper yet.