Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 458 tok/s Pro
Kimi K2 206 tok/s Pro
2000 character limit reached

Feature Representation in Convolutional Neural Networks (1507.02313v1)

Published 8 Jul 2015 in cs.CV

Abstract: Convolutional Neural Networks (CNNs) are powerful models that achieve impressive results for image classification. In addition, pre-trained CNNs are also useful for other computer vision tasks as generic feature extractors. This paper aims to gain insight into the feature aspect of CNN and demonstrate other uses of CNN features. Our results show that CNN feature maps can be used with Random Forests and SVM to yield classification results that outperforms the original CNN. A CNN that is less than optimal (e.g. not fully trained or overfitting) can also extract features for Random Forest/SVM that yield competitive classification accuracy. In contrast to the literature which uses the top-layer activations as feature representation of images for other tasks, using lower-layer features can yield better results for classification.

Citations (74)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube