Intertwining operators associated to dihedral groups
Abstract: The Dunkl operators associated to a dihedral group are a pair of differential-difference operators that generate a commutative algebra acting on differentiable functions in $\mathbb{R}2$. The intertwining operator intertwines between this algebra and the algebra of differential operators. The main result of this paper is an integral representation of the intertwining operator on a class of functions. As an application, closed formulas for the Poisson kernels of $h$-harmonics and sieved Gegenbauer polynomials are deduced when one of the variables is at vertices of a regular polygon, and similar formulas are also derived for several other related families of orthogonal polynomials.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.