Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Radon Transform on spheres and generalized Bessel function associated with dihedral groups (1009.5797v2)

Published 29 Sep 2010 in math.CA

Abstract: Motivated by Dunkl operators theory, we consider a generating series involving a modified Bessel function and a Gegenbauer polynomial, that generalizes a known series already considered by L. Gegenbauer. We actually use inversion formulas for Fourier and Radon transforms to derive a closed formula for this series when the parameter of the Gegenbauer polynomial is a strictly positive integer. As a by-product, we get a relatively simple integral representation for the generalized Bessel function associated with even dihedral groups when both multiplicities sum to an integer. In particular, we recover a previous result obtained for the square symmetries-preserving group and we give a special interest to the hexagon. The paper is closed with adapting our method to odd dihedral groups thereby exhausting the list of Weyl dihedral groups.

Summary

We haven't generated a summary for this paper yet.