Papers
Topics
Authors
Recent
2000 character limit reached

The Dunkl kernel and intertwining operator for dihedral groups

Published 20 Feb 2020 in math.CA | (2002.09065v3)

Abstract: Dunkl operators associated with finite reflection groups generate a commutative algebra of differential-difference operators. There exists a unique linear operator called intertwining operator which intertwines between this algebra and the algebra of standard differential operators. There also exists a generalization of the Fourier transform in this context called Dunkl transform. In this paper, we determine an integral expression for the Dunkl kernel, which is the integral kernel of the Dunkl transform, for all dihedral groups. We also determine an integral expression for the intertwining operator in the case of dihedral groups, based on observations valid for all reflection groups. As a special case, we recover the result of [Xu, Intertwining operators associated to dihedral groups. Constr. Approx. 2019]. Crucial in our approach is a systematic use of the link between both integral kernels and the simplex in a suitable high dimensional space.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.