The Dunkl kernel and intertwining operator for dihedral groups
Abstract: Dunkl operators associated with finite reflection groups generate a commutative algebra of differential-difference operators. There exists a unique linear operator called intertwining operator which intertwines between this algebra and the algebra of standard differential operators. There also exists a generalization of the Fourier transform in this context called Dunkl transform. In this paper, we determine an integral expression for the Dunkl kernel, which is the integral kernel of the Dunkl transform, for all dihedral groups. We also determine an integral expression for the intertwining operator in the case of dihedral groups, based on observations valid for all reflection groups. As a special case, we recover the result of [Xu, Intertwining operators associated to dihedral groups. Constr. Approx. 2019]. Crucial in our approach is a systematic use of the link between both integral kernels and the simplex in a suitable high dimensional space.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.