Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Locally finite extensions and Gesztesy-Šeba realizations for the Dirac operator on a metric graph (1806.04130v1)

Published 11 Jun 2018 in math.SP

Abstract: We study extensions of direct sums of symmetric operators $S=\oplus_{n\in\mathbb{N}} S_n$. In general there is no natural boundary triplet for $S*$ even if there is one for every $S_n*$, $n\in\mathbb{N}$. We consider a subclass of extensions of $S$ which can be described in terms of the boundary triplets of $S_n*$ and investigate the self-adjointness, the semi-boundedness from below and the discreteness of the spectrum. Sufficient conditions for these properties are obtained from recent results on weighted discrete Laplacians. The results are applied to Dirac operators on metric graphs with point interactions at the vertices. In particular, we allow graphs with arbitrarily small edge length.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.