Papers
Topics
Authors
Recent
2000 character limit reached

Self-adjoint and Markovian extensions of infinite quantum graphs

Published 12 Nov 2019 in math.SP, math-ph, math.FA, and math.MP | (1911.04735v2)

Abstract: We investigate the relationship between one of the classical notions of boundaries for infinite graphs, \emph{graph ends}, and self-adjoint extensions of the minimal Kirchhoff Laplacian on a metric graph. We introduce the notion of \emph{finite volume} for ends of a metric graph and show that finite volume graph ends is the proper notion of a boundary for Markovian extensions of the Kirchhoff Laplacian. In contrast to manifolds and weighted graphs, this provides a transparent geometric characterization of the uniqueness of Markovian extensions, as well as of the self-adjointness of the Gaffney Laplacian -- the underlying metric graph does not have finite volume ends. If however finitely many finite volume ends occur (as is the case of edge graphs of normal, locally finite tessellations or Cayley graphs of amenable finitely generated groups), we provide a complete description of Markovian extensions upon introducing a suitable notion of traces of functions and normal derivatives on the set of graph ends.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.