Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the spectral theory of Gesztesy-Šeba realizations of 1-D Dirac operators with point interactions on a discrete set (1302.5044v1)

Published 20 Feb 2013 in math-ph, math.AP, math.MP, and quant-ph

Abstract: We investigate spectral properties of Gesztesy-\v{S}eba realizations D_{X,\alpha} and D_{X,\beta} of the 1-D Dirac differential expression D with point interactions on a discrete set $X={x_n}{n=1}\infty\subset \mathbb{R}.$ Here $\alpha := {\alpha{n}}{n=1}\infty$ and \beta :={\beta{n}}{n=1}\infty \subset\mathbb{R}. The Gesztesy-\v{S}eba realizations $D{X,\alpha}$ and $D_{X,\beta}$ are the relativistic counterparts of the corresponding Schr\"odinger operators $H_{X,\alpha}$ and $H_{X,\beta}$ with $\delta$- and $\delta'$-interactions, respectively. We define the minimal operator D_X as the direct sum of the minimal Dirac operators on the intervals $(x_{n-1}, x_n)$. Then using the regularization procedure for direct sum of boundary triplets we construct an appropriate boundary triplet for the maximal operator $D_X*$ in the case $d_(X):=\inf{|x_i-x_j| \,, i\not=j} = 0$. It turns out that the boundary operators $B_{X,\alpha}$ and $B_{X,\beta}$ parameterizing the realizations D_{X,\alpha} and D_{X,\beta} are Jacobi matrices. These matrices substantially differ from the ones appearing in spectral theory of Schr\"odinger operators with point interactions. We show that certain spectral properties of the operators $D_{X,\alpha}$ and $D_{X,\beta}$ correlate with the corresponding spectral properties of the Jacobi matrices $B_{X,\alpha}$ and $B_{X,\beta}$, respectively. Using this connection we investigate spectral properties (self-adjointness, discreteness, absolutely continuous and singular spectra) of Gesztesy--{\vS}eba realizations. Moreover, we investigate the non-relativistic limit as the velocity of light $c\to\infty$. Most of our results are new even in the case $d_(X)> 0.$

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.