Papers
Topics
Authors
Recent
2000 character limit reached

Boundary Conditions Matter: On The Spectrum Of Infinite Quantum Graphs

Published 8 Jul 2022 in math.SP and math.FA | (2207.04024v2)

Abstract: We study the interplay between spectrum, geometry and boundary conditions for two distinguished self-adjoint realisations of the Laplacian on infinite metric graphs, the so-called Friedrichs and Neumann extensions. We introduce a new criterion for compactness of the resolvent and apply this to identify a transition from purely discrete to non-empty essential spectrum among a class of infinite metric graphs, a phenomenon that seems to have no known counterpart for Laplacians on Euclidean domains of infinite volume. In the case of discrete spectrum we then prove upper and lower bounds on eigenvalues, thus extending a number of bounds previously only known in the compact setting to infinite graphs. Some of our bounds, for instance in terms of the inradius, are new even on compact graphs.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.