Papers
Topics
Authors
Recent
2000 character limit reached

Semi-parametric transformation boundary regression models (1804.05783v2)

Published 16 Apr 2018 in math.ST and stat.TH

Abstract: In the context of nonparametric regression models with one-sided errors, we consider parametric transformations of the response variable in order to obtain independence between the errors and the covariates. We focus in this paper on stritcly increasing and continuous transformations. In view of estimating the tranformation parameter, we use a minimum distance approach and show the uniform consistency of the estimator under mild conditions. The boundary curve, i.e. the regression function, is estimated applying a smoothed version of a local constant approximation for which we also prove the uniform consistency. We deal with both cases of random covariates and deterministic (fixed) design points. To highlight the applicability of the procedures and to demonstrate their performance, the small sample behavior is investigated in a simulation study using the so-called Yeo-Johnson transformations.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.